
PBC, Physically Based Character controller
There is no going back

Patrik Tegelberg, 2015-sept-27

To me games are part escape and part intense experience. Good games are not technology
driven, but bad technology makes for a inferior game experience. Good games have
technology to match the story.

This asset relieves the pressure of needing a fantastically complicated animation code in order
to have the character move naturally, and interact with the environment. At the same time you
can use mecanim animations in almost the same way as you normally do.

To achieve this a physical character (known as a ragdoll) is augmented to accept any canned
animation. The ragdoll can thus have all the functionality of a regular character controller, but
also interacts realistically with the environment. It pushes on, and is pushed by, the
environment.

The automated ragdoll creation and character setup eliminates much of the boring and tedium.
Just drop the CreateHumanRagdoll script onto your character (with a valid mecanim avatar),
choose an option and click createNow. The character will, without any more work now:
interact with the game objects in your scene, be knocked back, react to hits, follow moving
platforms and have good foot IK.

There is no going back. In eight years all characters will be physically based, just like all shaders
soon are physically based. There is no going back, be a pioneer now, or a follower later.

Table of Contents
PBC, Physically Based Character controller..1

History...1
Feature overview..2
Setup..5
Scripts overview..6
General good to know things...12

History
A few years back I decided to play some counter strike. I died too much, and figured I did not
have the time to get good playing, I needed something with more intense training. I made a
small game with no story but lots of shooting. It bugged me that the enemies did not react to
non lethal hits, not even in the AAA games. I have not played counter strike since, I did this
instead.

PBC_Beta_02 27/09/15 1

Feature overview
It turns out that to get realistic physics, one feature often depends on another. That means you
have to develop several to get one. On the other hand, if you have built a few features, then
you often get a few more for cheap. The features are, as much as possible, implemented as
continuous physical mathematics with higher performance than non-physical state machines. A
few of possibilities mentioned below will require some coding, whether you consider the
coding needed easy or hard will depend on your skill level. To be high performing, care have
been taken to make the system able to run at the Unity standard fixed delta time of 0.02
seconds.

Knock back
The character has a will, it desires to do your bidding. It wants to follow the animations and
root motions, but it is human and has limited strength. Thus if it is hit by a object, or force, it
will be knocked back in accordance to the physical law of preservation of momentum. This is
true for the character as a whole and for individual limbs.

Ragdoll and back again
If the character is hit by a severe enough impact a fall is triggered. The character then ragdolls
and falls, but it does not go completely ragdoll immediately. The characters ability to follow the
current animation fades, making the fall look more life like. It is also possible (in code) to switch
animation and have the ragdoll try to follow a custom fall animation during fall. After the fall
the character will regain strength and smoothly rise to continue following your animations.

Partial ragdoll pro
Since the strength of the ragdoll can be set in real time for each individual limb, partial ragdolls
are easy. Complete partial ragdolls look unnatural. This system lets you go partially, partial
ragdoll, and fade in and out of any blend between animation and ragdoll.

Soft character
The character can be pushed or dragged by simply adding a force to any limb. You could literary
take it by its hand (or ear) and lead it away. It will also push on objects. The pushing force, or
the force needed to drag the character, depends on the friction.

Compatible with custom IK
There is a script called CustomUserIK. Whatever changes you make to the character's pose in
that script will be the pose that the ragdoll tries to mimic.

Newtons first law
To any force there is an equal and opposite force. Any motion of the physically based character
is accomplished by adding forces to it. An equal and opposite force (and toque) is automatically

PBC_Beta_02 27/09/15 2

applied to the object the character is standing on. If you jump on a car, the car will move. If you
jump onto a trolley, you and the trolley will roll away. If you stand on a boat, the boat will tilt
and sink a little. The object you stand on must be physical for this to be true, but other than
that no coding is required.

Precision foot friction
A good foot friction model is central to physically based motion. Friction determines how far
you will be knocked back and how sharp you can turn. If the friction is non-physical, other parts
of the system must be non-physical too. The implemented friction model accurately takes into
account both gravity, slopes and acceleration forces. You can turn sharper if you have a berm.

Balance tilt
You lean inwards when you turn and forward when you accelerate. Good animators accomplish
this with AI and many animations. This system does not require special animations to achieve
that effect, it will modify the animations on the fly to tilt the character to the physically
appropriate angle. This is true both when running and when standing still. If you make for
example the hand's rigidbody heavy the character will tilt away from that hand to keep the
centre of mass directly above the transform. Imagine how you look when you carry one heavy
grocery bag.

Natural ground follow
When you run over undulated terrain the distance from the ground to your centre of gravity
will vary to allow you to move in the most energy efficient way. A character not moving in an
energy efficient way does not look natural.

Soft legs
Legs are not infinitely strong, hence they bend when your up/down velocity changes, e.g. when
you land, when you run and the incline changes, or when the platform on which you stand
accelerates vertically.

Predictive foot IK
Making a simple foot IK is easy. Making a foot IK that looks natural in any situation a game
character can encounter is very complex. The included (optional) foot IK tries to predict where
the next step is going to be planted and moves the foot there on a natural path, as if the
character had vision. It also adjusts the step length on slopes. I do not recommend trying to
implement your own foot IK. The foot IK is good enough to be hard to beat.

Moving platforms
The character automatically follows any platform it stands on. The velocity change is not
instant, it is physical and depends on the friction. If the platform is rotation or tilting and the
friction is not sufficient the character will glide. Since the character both follows and moves the

PBC_Beta_02 27/09/15 3

platform it stands on, effects like jumping on a trolley and roll away with preserved momentum
requires no extra programming. This may not work work stably for very light platforms (less
than about one character mass). Heavy or kinetic platforms work well.

Independent character gravity
The characters gravity is not governed by PhysX, but is independent. This allows for some
creative game play, like spherical worlds, ceiling walks, or infinite wall runs.

Advanced motion controller
It is possible to use this system with any animator (legacy animations are hard). The included
animator solves a few common obstacles for natural looking motion.

• Few transitions, most animations are blended to a continuous spectrum.

• Jump height is controllable. A tap on the space bar will result in a smaller jump than a
full press will.

• When friction sliding, a parameter can adjust the blend for, if the feet are to move with
the speed of the animation (gives cartoony look), or follow the ground's relative speed
(more realistic look).

• Parameters in the inspector to set animation speed, and to scale the step length.

Synced foot sound
If the foot was moving, in the air, and is now on the ground, not moving, a foot step sound is
played. Volume is linear with character velocity relative to the ground or platform.

Character/ragdoll automatic set-up
In the automatic set-up the ragdoll is automatically created to fit your model, the scripts are
added and the variables are assigned. Read the setup instructions below.

NavMesh ready
To integrate this with NavMesh or similar AI I recommend having the NavMesh move a “rabbit”
transform, and using the FollowRabbit feature to to have the character follow the rabbit.

NPC characters
Choosing the NPC option makes the character disregard the normal user inputs and follow the
animation and animation root motion. This could also be used to make your own animator
based motion controller.

No MMO button
There is no MMO button implemented. To have a complete game you may have to do work.

PBC_Beta_02 27/09/15 4

Setup
✗ Put your character in the scene.

✗ Make it strike a pose similar to the one shown in Illustration 1, with the legs slightly
spread and the arms slightly dropped. The reason this is a good pose is because this will
be the centre of the limbs' rotational limits.

✗ Drag and drop the CreateHumanRagdoll script, Illustration 2, onto the character. Assign
a valid avatar. Choose an option, and click createNow. If you do not assign a custom
blood particle system, the default will be used.

✗ Check that there are no warnings in the console, and that the colliders have appropriate
size.

Optionally

✗ In the Camera3rd inspector, assign your character's hips to the lookAtTransform. Assign
your characters headCamera (if you choose the FPS camera) to camera3rd's head
camera field.

✗ Assign any ragdoll transform to the cannon ball's hit transform field.

✗ Download this script: http://pastebin.com/j3DWqe3R
and drop it on any transform in the scene. Change the GetMouseButton(o) to
GetMouseButton(2) in the script, and change the spring from 50 to about 5000.

I recommend not to to choose the ragdollShoulders option. It will work but the PhysX chain
becomes unnecessary long and can possibly get out of shape. If possible use animations where
the shoulders are not animated and where the shoulders is set to none in the avatar
configuration. Save a copy of your character before you change anything in the avatar
configurer.

PBC_Beta_02 27/09/15 5

Illustration 2: The inspector of the setup script. Illustration 1: Good setup pose.

http://pastebin.com/j3DWqe3R

Scripts overview
This package is fairly comprehensive. It is expected that many users will want to modify this to
get their own functionality. In this section the broad strokes (and some details) of the scripts
are explained, in order to provide the user with the knowledge needed to expand this into
his/her unique game.

Script Main
This script, shown in Illustration 3, controls the order in which the systems are executed. The
Main is run with the frequency of FixedUpdate to be in sync with the physics engine. To be high
performing, care have been taken to make the system able to run at the Unity standard fixed
delta time of 0.02 seconds.

The commented out lines, in Main, that says SeeAnimatedMaster. DrawMaster can be
uncommented to let you see a stick figure of the master at that point in the execution. This
allows you to simultaneously see what the master's and the ragdoll's poses are. Under normal
operation only the ragdoll is shown. There is also an option in the script AnimFollow to instead
see only the master. These options are off course there as debugging tools if the character
exhibits unexpected behaviour.

PBC_Beta_02 27/09/15 6

Illustration 3: The Main script, determines the execution order.

Script SimpleMoveScript
This asset is complicated. Many things must happen in sync to get the desired result. As a
service to anyone feeling overwhelmed I provide the SimpleMoveScript, Illustration 4, that is
an example of what must happen to have any kind of working system. To get the simple
character you choose nothing in the setup script, just click create now.

Method WeHaveAllTheStuff
 In several scripts you will see a bool called userNeedsToFixStuff that is set by a method called
WeHaveAllTheStuff. The WeHaveAllTheStuff method assigns the variables that needs assigning
and checks that the other dependencies are ready. This is a helper function to give the user tips
and warnings about things that may cause the package to not execute properly. With the
advent of the automatic set-up the need for these checks are greatly diminished, but for the
time being they persist. This does not affect performance but can, if you want to, be removed
(lines that do assigning must persist). WeHaveAllTheStuff consists mostly of things like the
code shown in Illustration 5.

PBC_Beta_02 27/09/15 7

Illustration 4: The SimpleMoveScripts is an example of the minimum of things that must happen to
have any kind of working system.

Illustration 5: The method WeHaveAllTheStuff tries to help the user find setup errors.

Script MoveClass
The first method called by Main is MoveCharacter in the AdvancedMoveScript Illustration 6.
This method does in turn manage the execution order of the methods handling the motion of
the character. Notice that the both the Advanced- and SimpleMoveScript call methods in
AnimFollow. Tese calls must be made like this for the system to work.

Physics work by accurately applying forces to acquire motion. The desired result of a motion is
a position or a velocity. Crucial to quality motion is the purity of the signals. If the signals is
noisy, filtering is needed and filtering introduces lag. In going from delta position to velocity,
noise is introduced and in going to acceleration more noise is introduced. This system is
therefore built with acceleration as the primary control signal.

Script AdvancedFootIK
The second method to be called by Main is DoFootIK. DoFootIK manage the execution order of
the methods involved in making the feet move naturally. The script communicate with the
other systems via an abstract class. If a foot IK solution is not present, then a bare minimum of
information is provided by a class called NoFootIK to keep the characters other functions
operational.

Raycasts are potentially expensive, so the footIK script keeps the rays short and use a
layerMask. You can modify the layerMask to suit your scene. There are also several options to
turn off raycasts. The system default is setup to turn raycasts on and off based on velocity, but
you could easily code other LOD schemes.

PBC_Beta_02 27/09/15 8

Illustration 6: It is important that the methods AnimFollow.BeforeMove and AfterMove get called.

Script UserCustomIK
In UserCustomIK, Illustration 7, you may insert your own IK solution. Any change to the
master's pose here will be the pose that the ragdoll tries to mimic. The script comes with a
simple example of how a custom IK will override all other animations and previous IK. This code
is not otherwise used and can all be deleted.

Script RagdollControl
RagdollControl is the script that controls if the character is to ragdoll and fall. Illustration 8
shows the line with the conditions to trigger a fall. You can add any fall condition you want for
your project (in code).

Script Animfollow
AnimFollow makes the ragdoll come alive and mimic the animated master. It controls the
strength of the ragdoll. In this system AnimFollow has received upgrades in both precision and
performance.

Script Limb
The limb scripts are distributed to all colliders on the ragdoll. These scripts monitor if that limb
is colliding, and can be very useful to users that want to customise their character's behaviour.

PBC_Beta_02 27/09/15 9

Illustration 7: The UserCustomIK script.

Illustration 8: The conditions in script RagdollControl that triggers the ragdoll to fall.

Inspector parameters
In this section some variables are explained, both variables that are made visible in the
inspector and variables that you may want to make visible to play around with.

AnimFollow inspector
ragdollRigidTransforms is an array containing the ragdoll transforms. It is made visible so that I
you can look at it and know the array index of any particular limb. This becomes useful if you
want to adjust the strength profiles, which set the strength of an individual limb. To set the
overall strengths use the strength parameter. The joint strengh profile changes only takes
effect if the updateInspectorChanges is clicked. There are two types of strength: joint and
force, experiment to get the effect you desire. The Dforce parameter sets if the ragdoll is
biased to mimic the master limb positions or the master limb velocities. A low Dforce makes
the ragdoll stiffer, and is follows the animation more closely. ForceTune also affects the
ragdolls stiffness, set to one for max stiffness. The softRotation and softTilt set the strength
with which the ragdoll's rotation is trying to align with the master's rotation. Keep softRotation
at zero for for FPS characters and if you have rotating platforms. LockSoftN and T disable the
character's ability to be pushed around by other colliders. It can be set to only affect the
directions normal and tangential to the ground. The animations and jumps will still work.
AutoLockSoft turns off the lockSofts when a collision is detected by the limb scripts. The see
master bool is for debugging and will show what the master is doing (remember that you are
looking at a ragdoll most of the time and that the ragdoll only tries to do what the master
does).

There are a few more variables in the script that you might want to fiddle with:
float angularDrag = 12f; // Rigidbodies angular drag
float drag = 0f; // Rigidbodies drag
float jointDamping = .1f; // Does not yet work in Unity 5. Bug in Unity, not in AnimFollow
float fullJointStrength = 10000f; // PhysX joint strength value when jointStrength is set to one

RagdollControl inspector
External force limit sets the amount of external force the ragdoll can experience before a fall is
triggered. Tilt limit sets the amount of tilt angle between the master and the ragdoll that is
allowed before a fall is triggered. Speed limit sets the maximum relative speed allowed in a
collision before a fall is triggered. The Ext, tilt and speed limiten bool indicates why a fall was
triggered (should not be clicked on). The residual strengths affects the strength left in the
ragdoll just after a fall is triggered (also dependent on the ragdolls velocity at impact). Fall lerp
sets how fast the ragdoll loses its residual strength. Stay down makes the ragdoll not get up
after a fall (is reversible). Shot by bullet can be used to trigger a fall. InhibitFall turns off the
ragdolls ability to fall (looks cool to inhibit fall and shoot the ragdoll).

There are a few more variables in the script that you might want to fiddle with:
float settledSpeed = .5f; // Velocity limit below which the falling state is over and the get up starts

FollowRabbit inspector
As soon as you assign a “rabbit” transform to the followTransform field the character moves
towards that rabbit transform. When it is close enough it will also follow the rabbit's ratation.
To use this with NavMesh or equivalent AI, move the rabbit with the AI.

PBC_Beta_02 27/09/15 10

MouseAim inspector
Mouse sensitivity independently for the horizontal and the vertical direction. Mouse smooth
time smooths mouse movements, is set independently if the head camera smooth time to
avoid the hysteric feel.

There are a few more variables in the script that you might want to fiddle with:
float zoom = .25f; // Zoom magnification (reciprocal)
float mouseZoomSensRatio = .5f; // Mouse sensitivity when zoomed in
int mouseMode = 0; // Three modes to choose from

AdvancedMoveClass inspector
If the current planet field is not set to none, then the character will gravitate towards the
transform chosen as current planet. Perpendicular gravity sets the character gravity to be
perpendicular to the surface the character stands on. GravitySet is this characters individual
gravity. Use tilt acc makes the character accelerate in the direction the ragdoll is tilted relative
to the master. Friction set is the friction the character uses if the use material friction is not
chosen (in which case the friction used will be the static friction specified by the physics
material of the object the character stands on). Scale step length and animator speed modifies
the movement animation currently played (slightly different effects if root motion is not
chosen). A high value on Slip lerp will give the character a cartoony running style. Use root
motion alternates between the option of having the character's motion driven by the
animation's root motion or another option which scales the step length to fit the desired
speed. Use slip lerp about 0.3 if you do not use root motion. Jump velocity sets the jump
height. The jump height is also controllable by the time the jump button is held. A tap will result
in a smaller jump than a full press. The feel of the jump button can be tuned by the jump
response time parameter. Mouse force is a work in progress. Tame leaning will make the
character lean less into the acceleration. AimToBodyRotVelRatio and aimToBodyLerp sets how
the character reacts to mouse velocity and how fasr the character aligns with the mouseAim
transform. Enforce rotation makes the rotation disregard maxRotationAcc.

There are a few more variables in the script that you might want to fiddle with:
// In the Jump script
float P_Vertical = 100; // Parameter to adjust the PD controller used to follow the ground
float D_Vertical = .01f; // Parameter to adjust the PD controller used to follow the ground
float verticalTune = .15f; // Parameter to adjust the input to the PD controller
// In the Rotate script
float maxRotationAcc = 4000f; // Basically this works as a friction parameter for rotations
float aimToBodyRotVelRatio = .3f; // Mouse feel
float aimToBodyLerp = .1f; // Mouse feel
// In the Tilt script
float effectiveUpSmoothTime = .25f; // Controls the smoothing of the character lean
float effectiveUpSmoothTime2 = .1f; // Controls the smoothing of the character lean

Main inspector
Destroy when dead makes the character be destroyed when going off screen, if the character
is fallen and RagdollControl.stayDown is true. nPC disables WASD and mouse control and the
character move by the root motion of its animation.

PBC_Beta_02 27/09/15 11

General good to know things
Here follows some things that I figured could be good to know.

The character is soft
That is kind of the point, it should act human. There are several settings to adjust how soft it is.
It can be made quite stiff if you need it to be. Here follows parameters that affect the
characters stiffness.

Dforce, lower is stiffer.

ForceTune, higher is stiffer.

SoftTiltSet and softRotationSet, lower is stiffer.

Force- and jointStrenght, lower is softer.

Force- and jointStrengthProfile, lower is softer per individual limb.

LockSoft, true is stiffer.

FrictionSet, higher is stiffer.

Edit/ProjectSettings/Time/Fixed timestep, lower is stiffer. (very stiff, but costs performance)

MaxRotationAcc, higher is stiffer. (private parameter in the Rotate script)

The code is sometimes complex
Because it handles a complex system. Expect that you will have to familiarize yourself with the
code before you can do significant changes.

I am sure the code can, to some degree, be simplified more, but this is how it sits at the
moment.

Customizing the controls
To make your own customized controls you might, or might not, have to do things differently
than you are used to. If you take the time to study how I have implemented my controls I am
sure you will, after some swearing, be able to have it precisely the way you want.

I am glad to help, but I will not build your game for you
Ask good questions, and you will get good answers. A good question is precise and has a real
answer, like: Can I use the limb scripts to get different damage on different limbs? A bad
question is: i wanna make a game like this link how do I do that.

PBC_Beta_02 27/09/15 12

	PBC, Physically Based Character controller
	History
	Feature overview
	Setup
	Scripts overview
	General good to know things

