
PBC, Physically Based Character
There is no going back

Patrik Tegelberg, 2015-dec-15

I think one of my customers nailed it in this quote:

As an animator, it's my job to bring characters to life, and it's amazing how
much physical based interaction adds to that. Your PBC system demo is
absolutely wonderful, and after reading the docs, I realized it pretty much
has everything I could hope to learn, and looks like great fun to work with.

What makes this active ragdoll stand out is how it behaves when it is not falling, where it
simultaneously is both soft and strong. Lesser system can be made soft, but not without totally
losing the ability to accurately mimic the animation.

This asset relieves the pressure of needing a fantastically complicated animation code in order
to have the character move naturally, or interact with the environment. At the same time you
can use mecanim animations in almost the same way you normally do.

Physically interacting characters are no longer prohibitively expensive and will soon be
everywhere. Additionally this system can seamlessly and automatically suspend the ragdoll
when it is not needed, leaving the character no more costly than a regular character.

Table of Contents
PBC, Physically Based Character...1

History...1
Feature overview..2
Setup humanoid...5
Setup generic..6
Scripts overview..7
General good to know things...12

History
A few years back I decided to play some counter strike. I died too much, and figured I did not
have the time to get good playing, I needed something with more intense training. I made a
small game with no story but lots of shooting. It bugged me that the enemies did not react
believable (or at all) to non lethal hits, not even in the AAA games. I have not played counter
strike since, I did this instead.

PBC_Beta_02 12/15/15 1

Feature overview
It turns out that to get realistic physics, one feature often depends on another. That means you
have to develop several to get one. On the other hand, if you have built a few features, then
you often get a few more for cheap. The features are, as much as possible, implemented as
continuous physical mathematics, with higher fidelity than non-physical state machines. To be
high performing, care have been taken to make the system able to run at the Unity standard
fixed delta time of 0.02 seconds.

Soft character
The character can be pushed or dragged by simply adding a force to any limb. You could literary
take it by its hand (or ear) and lead it away. It will also push on objects. The pushing force, or
the force needed to drag the character, depends on the friction. There are several ways to
adjust the character stiffness, in pose, position and rotation. The systems ability to follow fast
paced animations and still be soft makes it an excellent choice for any application.

Knock back
The character has a will, it desires to do your bidding. It wants to follow the animations and
root motions, but is limited by being about about human strength. Thus if it is hit by a object, or
force, it will be knocked back in accordance to the physical law of preservation of momentum.
This is true for the character as a whole and for individual limbs.

Ragdoll and back again
If the character is hit by a severe enough impact a fall is triggered. The character then ragdolls
and falls, but it does not go completely ragdoll immediately. The characters ability to follow the
current animation fades, making the fall look more life like. It is optional to switch animation
during a fall, and have the ragdoll try to follow a custom fall animation. After the fall the
character will regain strength and smoothly rise to continue following your animations (there is
an option to have it stay fallen).

Newtons first law
To any force there is an equal and opposite force. Any motion of the physically based character
is accomplished by adding forces to it. An equal and opposite force (and toque) is automatically
applied to the object the character is standing on. If you jump on a car, the car will move. If you
jump onto a trolley, you and the trolley will roll away. If you stand on a boat, the boat will tilt
and sink a little. The object you stand on must be physical for this to be true, but other than
that no coding is required.

Compatible with custom IK
There is a script called CustomUserIK. Whatever changes you make to the character's pose in
that script will be the pose that the ragdoll tries to mimic.

PBC_Beta_02 12/15/15 2

Precision foot friction
A good foot friction model is central to physically based motion. Friction determines how far
you will be knocked back and how sharp you can turn. If the friction is non-physical, other parts
of the system must be non-physical too. The implemented friction model accurately takes into
account both gravity, slopes and acceleration forces. You can turn sharper if you have a berm.

Balance tilt
You lean inwards when you turn and forward when you accelerate. Good animators accomplish
this with AI and many animations. This system does not require special animations to achieve
that effect, it will modify the animations on the fly to tilt the character to the physically
appropriate angle. This is true both when running and when standing still. If you make for
example the hand's rigidbody heavy the character will tilt away from that hand to keep the
center of mass directly above the transform. Imagine how you look when you carry one heavy
grocery bag. There is also a fancy feature that gives you the External force and torque acting
on the character, no coding required, no matter where the force came from. This could be used
to build a very advanced balance implementation. You can view the force by clicking
ShowExternalForce in the inspector.

Natural ground follow
When you run over undulated terrain the distance from the ground to your center of gravity
will vary to allow you to move in the most energy efficient way. A character not moving in an
energy efficient way does not look natural.

Soft legs
Legs are not infinitely strong, hence they bend when your up/down velocity changes, e.g. when
you land, when you run and the incline changes, or when the platform on which you stand
accelerates vertically.

Predictive foot IK
Making a simple foot IK is easy. Making a foot IK that looks natural in any situation a game
character can encounter is very complex. The included (optional) foot IK tries to predict where
the next step is going to be planted and moves the foot there on a natural path, as if the
character had vision. It also adjusts the step length on slopes. I do not recommend trying to
implement your own foot IK. The foot IK is good enough to be hard to beat.

Moving platforms
The character automatically follows any platform it stands on. The velocity change is not
instant, it is physical and depends on the friction. If the platform is rotation or tilting and the
friction is not sufficient the character will glide. Since the character both follows and moves the
platform it stands on, effects like jumping on a trolley and roll away with preserved momentum
requires no extra programming. This may not work work stably for very light platforms (less
than about one character mass). Heavy or kinetic platforms work well.

PBC_Beta_02 12/15/15 3

Independent character gravity
The characters gravity is not governed by PhysX, but is independent. This allows for some
creative game play, like spherical worlds, ceiling walks, or infinite wall runs.

Motion controller
It is possible to use this system with any animator (legacy animations are hard). The included
animator solves a few common obstacles for natural looking motion.

• Few transitions, most animations are blended to a continuous spectrum.

• Jump height is controllable. A tap on the space bar will result in a smaller jump than a
full press will.

• When friction sliding, a parameter can adjust the blend for, if the feet are to move with
the speed of the animation (gives cartoony look), or follow the ground's relative speed
(more realistic look).

• Parameters in the inspector to set animation speed, and to scale the step length.

Synced foot sound
If the foot was moving, in the air, and is now on the ground, not moving, a foot step sound is
played. Volume is linear with character velocity relative to the ground or platform.

Character/ragdoll automatic set-up
In the automatic set-up the ragdoll is automatically created to fit your model, the scripts are
added and the variables are assigned. Read the setup instructions below.

Partial ragdoll pro
Since the strength of the ragdoll can be set in real time for each individual limb, partial ragdolls
are easy. Complete partial ragdolls look unnatural. This system lets you go partially, partial
ragdoll, and fade in and out of any blend between animation and ragdoll.

NavMesh ready
To integrate this with NavMesh or similar AI I recommend having the NavMesh move a “rabbit”
transform, and using the FollowRabbit feature to to have the character follow the rabbit.

NPC characters / Custom animations
The character will animate just like a regular character. It will follow the pose and root motion
without any additional coding. The NPC character will still have all the active ragdoll features.

No MMO button
There is no MMO button implemented. To have a complete game you may have to do work.

PBC_Beta_02 12/15/15 4

Setup humanoid
✗ Put your character in the scene.

✗ Make it strike a pose similar to the one shown in Illustration 1, with the legs slightly
spread and the arms slightly dropped. The reason this is a good pose is because this will
be the center of the limbs' rotational limits (you can adjust the limits, but there will be
no need).

✗ Drag and drop the CreatePBCCharacter script, Illustration 2, onto the character. Assign
a valid avatar. Choose an option, and click createNow. If you do not assign a custom
blood particle system, the default will be used.

✗ Check that there are no warnings in the console. Check that the colliders have
appropriate size. Adjust the position of the heel and toe2 transforms.

✗ Replace the InputManager file, in Folder ProjectSettings, with the included
InputManager.

Optionally

✗ In the Camera3rd inspector, assign your character's hips to the lookAtTransform.

✗ Assign any ragdoll transform to the cannon ball's hit transform field.

✗ Download this script: http://pastebin.com/j3DWqe3R
and drop it on the directional light in the scene. Change the GetMouseButton(o) to
GetMouseButton(2) in the script, and change the spring from 50 to about 2000.

I recommend not to to choose the ragdollShoulders option. It will work but the PhysX chain
becomes unnecessary long and can possibly get out of shape. If possible use animations where
the shoulders are not animated and where the shoulders is set to none in the avatar
configuration. Save a copy of your character before you change anything in the avatar
configurer.

PBC_Beta_02 12/15/15 5

Illustration 2: The inspector of the setup script. Illustration 1: Good setup pose.

http://pastebin.com/j3DWqe3R

Setup generic
For generic animation's only the basic move script is supported. For humanoids I have taken
advantage of that it is known, how a humanoid is configured, and how we want a humanoid to
act. A generic animation can have any form, and thus no assumptions can be safely made.
Generic rigs will only be as polished as you make them.

✗ Put your master character in the scene.

✗ Make it strike a pose that you want to be the center of the joint's rotation limits.

✗ Child the master character to an empty game object. Zero the transform position and
rotation.

✗ Make another empty, named “ragdoll”, and child it to the first empty.

✗ Make a copy of the master. Drop the root bone of the copy on the “ragdoll” empty
(first child of the “ragdoll” empty should be the ragdoll root bone).

✗ Delete bones from the ragdoll until only the bones you wish to use as the ragdoll
remains.

✗ Drag and drop the CreateBOnlyGeneric script, onto the master character, click
createNow.

✗ The CreateBOnlyGeneric script will now check that it is childed, and have a sibling with a
name containing “ragdoll”. If it does it will make a ragdoll from the “ragdoll” hierarchy
and add the basic scripts.

✗ Check that there are no warnings in the console. Check that the colliders have
appropriate size / shape / position , that the rigidbodies have appropriate masses (larger
masses / colliders in the body, smaller in the limbs is a good setup).

✗ Set the joint limits.

✗ Replace the InputManager file, in Folder ProjectSettings, with the included
InputManager.

Optionally

✗ In the Camera3rd inspector, assign your character's hips to the lookAtTransform.

✗ Assign any ragdoll transform to the cannon ball's hit transform field.

NOTE! To make generic animations work well I recommend you use only as few transforms as is
needed. The more transforms the ragdoll has the the more tuning it will require to behave
smooth and stable. Fewer colliders is also better performance.

Make certain that the colliders do not interfere during normal operation. Colliders that are
jointed together may overlap because their collisions are disabled.

PBC_Beta_02 12/15/15 6

Scripts overview
This package is fairly comprehensive. It is expected that many users will want to modify this to
get their own functionality. In this section the broad strokes (and some details) of the scripts
are explained, in order to provide the user with the knowledge needed to expand this into
his/her unique game.

Script Main
This script, shown in Illustration 3, controls the order in which the systems are executed. The
Main is run with the frequency of FixedUpdate to be in sync with the physics engine. To be high
performing, care have been taken to make the system able to run at the Unity standard fixed
delta time of 0.02 seconds.

The commented out lines, in Main, that says SeeAnimatedMaster. DrawMaster can be
uncommented to let you see a stick figure of the master at that point in the execution. This
allows you to simultaneously see what the master's and the ragdoll's poses are. Under normal
operation only the ragdoll is shown. There is also an option in the script AnimFollow to instead
see only the master. These options are off course there as debugging tools if the character
exhibits unexpected behavior.

PBC_Beta_02 12/15/15 7

Illustration 3: The Main script, determines the execution order.

MoveScript of the BasicOnlyCharacter
This asset is complicated. Many things must happen in sync to get the desired result. As a
service to anyone feeling overwhelmed I provide a BasicOnly character with a simple
MoveScript, Illustration 4, that is an example of what must happen to have any kind of working
system. Maybe you don't need all the bells and whistles of a full PBC character, or you enjoy
building your own code. This may be the place to start for you.

Method WeHaveAllTheStuff
 In several scripts you will see a bool called userNeedsToFixStuff that is set by a method called
WeHaveAllTheStuff. The WeHaveAllTheStuff method assigns the variables that needs assigning
and checks that the other dependencies are ready. This is a helper function to give the user tips
and warnings about things that may cause the package to not execute properly. With the
advent of the automatic set-up the need for these checks are greatly diminished, but for the
time being they persist. This does not affect performance but can, if you want to, be removed
(lines that do assigning must persist). WeHaveAllTheStuff consists mostly of things like the
code shown in Illustration 5.

PBC_Beta_02 12/15/15 8

Illustration 4: The simple MoveScripts is an example of the minimum of things that must happen to
have any kind of working system.

Illustration 5: The method WeHaveAllTheStuff tries to help the user find setup errors.

Script MoveClass
The first method called by Main is MoveCharacter in the AdvancedMoveScript Illustration 6.
This method does in turn manage the execution order of the methods handling the motion of
the character. Notice that the AdvancedMoveScript calls a method in AnimFollow before it
does any moving of the transform. That call must be made like this for the system to work.

Physics work by accurately applying forces to acquire motion. The desired result of a motion is
a position or a velocity. Crucial to quality motion is the purity of the signals. If the signals is
noisy, filtering is needed and filtering introduces lag. In going from delta position to velocity,
noise is introduced and in going to acceleration more noise is introduced. This system is
therefore built with acceleration as the primary control signal.

Script AdvancedFootIK
The second method to be called by Main is DoFootIK. DoFootIK manage the execution order of
the methods involved in making the feet move naturally. The script communicate with the
other systems via an abstract class. If a foot IK solution is not present, then a bare minimum of
information is provided by a class called NoFootIK to keep the characters other functions
operational.

Raycasts are potentially expensive, so the footIK script keeps the rays short and use a
layerMask. You can modify the layerMask to suit your scene. There are also several options to
turn off raycasts. The system default is setup to turn raycasts on and off based on velocity, but
you could easily code other LOD schemes.

PBC_Beta_02 12/15/15 9

Illustration 6: It is important that the method AnimFollow.BeforeMove gets called.

Script UserCustomIK
In UserCustomIK, Illustration 7, you may insert your own IK solution. Any change to the
master's pose here will be the pose that the ragdoll tries to mimic. The script comes with a
simple example of how a custom IK will override all other animations and previous IK. This code
is not otherwise used and can all be deleted.

Script RagdollControl
RagdollControl is the script that controls how and when the character is to ragdoll and fall, or
get back up. Illustration 8 shows the line with the conditions to trigger a fall. You can add or
remove any fall condition you want for your project (in code).

The RagdollControl script is where you would add AI regarding for example falling animations
or health system. The Limb scripts report to the RagdollControll script and can be used to know
which limb was hit.

Script Animfollow
AnimFollow makes the ragdoll come alive and mimic the animated master. It controls the
strength of the ragdoll. In this system AnimFollow has received upgrades in both precision and
performance.

Script Limb
The limb scripts are distributed to all colliders on the ragdoll. These scripts monitor if that limb
is colliding, and can be very useful to users that want to customize their character's behavior.

PBC_Beta_02 12/15/15 10

Illustration 7: The UserCustomIK script.

Illustration 8: The conditions in script RagdollControl that triggers the ragdoll to fall.

Inspector parameters
In this section some variables are explained. Apart from the parameters made visible in the
inspector there may be a few more in the code for the interested user to fiddle with.

AnimFollow inspector
Ragdoll rigid transforms is an array containing the ragdoll transforms. It is made visible so that
you can look at it and know the array index of any particular limb. This becomes useful if you
want to adjust the strength profiles, which set the strength of an individual limb. To set the
overall strengths use the strength parameters. The joint strength profile changes only takes
effect if the update inspector changes is clicked. There are two types of strength: joint and
force, experiment to get the effect you desire. The Stiffness parameters are for fine tuning the
balance of the ragdoll's ability to follow the animation and the response to external forces. The
see master bool is for debugging and will show what the master is doing (remember that you
are looking at a ragdoll most of the time and that the ragdoll only tries to do what the master
does). Suspend ragdoll makes the character a regular character. Auto suspend ragdoll makes
the character transition back and forth between being a ragdoll as needed. No lift off makes
the character harder to lift off the ground.

RagdollControl inspector
External force limit sets the amount of external force the ragdoll can experience before a fall is
triggered. Speed limit sets the maximum relative speed allowed in a collision before a fall is
triggered. The Ext and speed limiten bool indicates why a fall was triggered (should not be
clicked on). The residual strengths affects the strength left in the ragdoll just after a fall is
triggered. Fall lerp sets how fast the ragdoll loses its residual strength. The strength during a
fall is also dependent on the ragdoll's velocity. Stay down makes the ragdoll not get up after a
fall (is reversible). Shot by bullet can be used to trigger a fall. Inhibit fall turns off the ragdoll's
ability to fall, you still have the non falling hit reactions because the character is soft.

AdvancedMoveClass inspector
The character falls by gravity if the character is not grounded if always grounded is not chosen.
For animations such as climbing choose use vertical root motion. The character is normally
balanced so that the character's center of gravity is kept above the transform, If that is not
desired you should unmark CG balance. Tilt as gravity and tilt as normal sets the balance up
direction to be constantly in the direction of the gravity or the ground normal. If the current
planet field is not set to none, then the character will gravitate towards the transform chosen
as current planet. Perpendicular gravity sets the character gravity to be perpendicular to the
surface the character stands on. Gravity set is this characters individual gravity. Acceleration
input sensitivity makes the character be controlled by phone acceleromerers. If a transform is
assigned as fake acceleration input tilting that transform will have the same effect as tilting the
phone. Use turn towards velocity when using accelerometer input. Friction set is the friction
the character uses if the use material friction is not chosen (in which case the friction used will
be the static friction specified by the physics material of the object the character stands on).
Scale step length and animator speed modifies the movement animation currently played

PBC_Beta_02 12/15/15 11

(slightly different effects if root motion is not chosen). A high value on slip lerp will give the
character a cartoony running style. Jump velocity sets the jump height. The jump height is also
controllable by the time the jump button is held. A tap will result in a smaller jump than a full
press. The feel of the jump button can be tuned by the jump response time parameter. Tame
leaning will make the character lean less into the acceleration.

GetWASD inspector
Assigning a transform to the rabbit transform makes the character chase that transform. You
can use any navmesh system to move the rabbit around. If mimic rabbit rotation is chosen the
character will orient as the rabbit is it is the nav rotation distance. You can tune the rabbit
follow speed. Mouse sensitivity can be adjusted here if you have chosen to use mouse. Master
mouse thune is for adjusting the mouse when the ragdoll is suspended. On some animations
you may / may not, want to use root rotation. The GetWASD scriot is quite simple code so you
would probably have no problem changing it to your liking. You can disable some of the
buttons by choosing to disable buttons, and even more can be disabled by this line in the Main
script: if (!disableInput), found at about line number 50.

Main inspector
Destroy when dead makes the character be destroyed when going off screen, if the character
is fallen and RagdollControl.stayDown is true.

AdvancedFootIK inspector
The grounded bool is exposed just for debugging reasons. Stick to transform is experimental
code that works kind of like parenting. It is also possible to parent the master to a (uniformly
scaled) transform, but it might cause trouble in some systems that would needs some
tweaking. Foot IK weights can be adjusted for left and right foot. You can disable some
functionality by not choosing to use predict, more predict or both toe and heel rays, this could
gain a little performance. There are some intelligence built In to automatically disable not
needed raycasts. Raycasts will ignore some layers. For debugging purposes it is possible to
show raycasts. The animation layer that bends the legs when the character is in the air is not
fully polished and should be disable aired layer at first sign of trouble. The limit foot snap is
used to limit the feet velocity at vertical edges. With for example crawling animations you may
want to disable foot fix (use when the foot collider is interfering with the animation). Ragdoll
left and right foot should be assigned (done in the automatic setup).

General good to know things
Here follows some things that I figured could be good to know.

Customizing the controls
Start by studying the GetWASD script.

Friction really is a good thing
At first some may feel it makes the character sluggish compared to a non physical character.
Try sprinting and pressing R to do a roundkick, imagine how bad that would look if the
transition did not have the friction gliding to aid it. Also try dragging the character over the

PBC_Beta_02 12/15/15 12

undulated terrain, or running and turning on slopes, It looks really natural. Increase the friction
coefficient to have more rapid response, but it will soon start to look unnatural.

Drag the character
If you did this step in the setup: Download this script: http://pastebin.com/j3DWqe3R
and drop it on the directional light in the scene. Change the GetMouseButton(o) to
GetMouseButton(2) in the script, and change the spring from 50 to about 2000.
Then you can apply force to the ragdoll by clicking the middle mouse button and dragging.

Hot keys
There are some hot keys already coded (found in the GetWASD script).

Key B launches the CannonBall towards the transform assigned in the BallTest script.

Key H toggles suspend ragdoll.

Key N toggles slow motion.

Key L locks the cursor.

Keys shift and ctrl are sprint and walk.

Key C toggles camera.

Key G toggles gravity to be perpendicular to the surface the character is standing on.

Look at the animator, there are some more keys to try animations, like climb or roundkick.

Making animations work
Most animations just work. Some may need a custom setting. In the included animator I have
shown how to make some animations work. In the animation's inspector try things like
enabling / disabling “Bake into pose”. Fiddle with the options in the character inspector. With
the right combination the animation will work.

Angular- and forceStrength
It is not entirely obvious what should happen when angular- or forceStrength is not zero or
one. I can make the character do what ever, but any choice I make will only please some. If you
cannot find a setting that makes the character behave the way you want, I can. I am confident I
have built this tool to be very able, with several solutions lying dormant in the code.

Optimization
I always have performance in mind, but this is a general tool that should handle many
scenarios. For your specific case there may be several places where performance can be gained
by not caring about all the other possible scenarios.

The character is soft
That is kind of the point, it should act with human strength. There are several settings to adjust
how soft / stiff it is. The BasicOnly character does not use the friction to limit the motion. It is
very fast and has easy control code, but less features.

The code is sometimes complex

PBC_Beta_02 12/15/15 13

http://pastebin.com/j3DWqe3R

Because it handles a complex system. Expect that you will have to familiarize yourself with the
code before you can do significant changes.

I am sure the code can, to some degree, be simplified more, but this is how it sits at the
moment.

I am glad to help, but I will not build your game for you
Ask good questions, and you will get good answers. A good question is precise and has a real
answer, like: Where is the grounded bool set? A bad question is: i wanna make a game like this
link how do I do that.

Disable The aired layer
The animation layer that bends the legs when the character is in the air is not fully polished and
should be disable aired layer at first sign of trouble. It does not look good over sharp vertical
edges, and it can interfere with animations that takes the character off the ground.

It is still beta
There might be bugs, and patches that aren't perfectly polished or optimized.
I am working on a solution for generic animations.

Be helpful
The character should handle most situations gracefully, but it is possible to make a scene in
which the character struggles. If it is an honest scene, with situations it is reasonable that the
character should handle, then I'll fix so that it does. In the mean time, help the character by
building scenes that make the character look good, because it makes you look good.

PBC_Beta_02 12/15/15 14

	PBC, Physically Based Character
	History
	Feature overview
	Setup humanoid
	Setup generic
	Scripts overview
	General good to know things

